Elements of small norm in Shanks' cubic extensions of imaginary quadratic fields

نویسندگان

  • Peter Kirschenhofer
  • Jörg M. Thuswaldner
چکیده

Let k = Q(√−D) be an imaginary quadratic number field with ring of integers Zk and let k(α) be the cubic extension of k generated by the polynomial ft (x) = x3 − (t − 1)x2 − (t + 2)x − 1 with t ∈ Zk . In the present paper we characterize all elements γ ∈ Zk [α] with norms satisfying |Nk(α)/k | ≤ |2t + 1| for |t | ≥ 14. This generalizes a corresponding result by Lemmermeyer and Pethő for Shanks’ cubic fields over the rationals. © 2004 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An algorithm to compute relative cubic fields

Let K be an imaginary quadratic number field with class number 1. We describe a new, essentially linear-time algorithm, to list all isomorphism classes of cubic extensions L/K up to a bound X on the norm of the relative discriminant ideal. The main tools are Taniguchi’s [18] generalization of Davenport-Heilbronn parametrisation of cubic extensions, and reduction theory for binary cubic forms ov...

متن کامل

Explicit Infrastructure for Real Quadratic Function Fields and Real Hyperelliptic Curves

In 1989, Koblitz first proposed the Jacobian of a an imaginary hyperelliptic curve for use in public-key cryptographic protocols. This concept is a generalization of elliptic curve cryptography. It can be used with the same assumed key-per-bit strength for small genus. More recently, real hyperelliptic curves of small genus have been introduced as another source for cryptographic protocols. The...

متن کامل

Divisibility of class numbers: enumerative approach

It is well-known since Gauss that infinitely many quadratic fields have even class number. In fact, if K is a quadratic field of discriminant D, having r prime divisors, then the class number hK is divisible by 2 if D < 0 and by 2 if D > 0. See [4, Theorem 3.8.8] for a more precise statement. In 1922 Nagell [17, Satz VI] obtained the following remarkable result: given a positive integer l, ther...

متن کامل

A Mean Value Theorem for Orders of Degree Zero Divisor Class Groups of Quadratic Extensions over a Function Field

Let k be a function field of one variable over a finite field with the characteristic not equal to two. In this paper, we consider the prehomogeneous representation of the space of binary quadratic forms over k. We have two main results. The first result is on the principal part of the global zeta function associated with the prehomogeneous vector space. The second result is on a mean value the...

متن کامل

Euclidean Ideals in Quadratic Imaginary Fields

— We classify all quadratic imaginary number fields that have a Euclidean ideal class. There are seven of them, they are of class number at most two, and in each case the unique class that generates the class-group is moreover norm-Euclidean.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Symb. Comput.

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2004